All Trigonometric Formulas

All Trigonometric Formulas for Government Exams

All Trigonometric Formulas for Government Exams

A comprehensive, colorful guide with formulas, graphs, quadrants, and applications.

Trigonometric Ratios

Ratio Formula Description
sin θ Perpendicular / Hypotenuse Opposite side over longest side
cos θ Base / Hypotenuse Adjacent side over longest side
tan θ Perpendicular / Base Opposite over adjacent
cot θ Base / Perpendicular Adjacent over opposite
sec θ Hypotenuse / Base Longest side over adjacent
csc θ Hypotenuse / Perpendicular Longest side over opposite

Pythagorean Identities

Identity Formula
Basic sin²θ + cos²θ = 1
Tangent 1 + tan²θ = sec²θ
Cotangent 1 + cot²θ = csc²θ
Rearranged sin²θ = 1 - cos²θ
Rearranged cos²θ = 1 - sin²θ

Reciprocal and Quotient Identities

Type Formula
Reciprocal sin θ = 1 / csc θ
Reciprocal cos θ = 1 / sec θ
Reciprocal tan θ = 1 / cot θ
Quotient tan θ = sin θ / cos θ
Quotient cot θ = cos θ / sin θ

Angle Sum and Difference Identities

Function Sum Formula Difference Formula
sin sin(α + β) = sin α cos β + cos α sin β sin(α - β) = sin α cos β - cos α sin β
cos cos(α + β) = cos α cos β - sin α sin β cos(α - β) = cos α cos β + sin α sin β
tan tan(α + β) = (tan α + tan β) / (1 - tan α tan β) tan(α - β) = (tan α - tan β) / (1 + tan α tan β)

Double and Half Angle Identities

Type Formula
Double (sin 2θ) 2 sin θ cos θ
Double (cos 2θ) cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ
Double (tan 2θ) (2 tan θ) / (1 - tan²θ)
Half (sin²(θ/2)) (1 - cos θ) / 2
Half (cos²(θ/2)) (1 + cos θ) / 2
Half (tan(θ/2)) (1 - cos θ) / sin θ = sin θ / (1 + cos θ)

Product-to-Sum and Sum-to-Product Identities

Type Formula
Product-to-Sum sin α cos β = (1/2)[sin(α + β) + sin(α - β)]
Product-to-Sum cos α cos β = (1/2)[cos(α + β) + cos(α - β)]
Sum-to-Product sin α + sin β = 2 sin((α + β)/2) cos((α - β)/2)
Sum-to-Product cos α + cos β = 2 cos((α + β)/2) cos((α - β)/2)

Quadrant Signs

Quadrant sin θ cos θ tan θ cot θ sec θ csc θ
I (0°-90°) + + + + + +
II (90°-180°) + - - - - +
III (180°-270°) - - + + - -
IV (270°-360°) - + - - + -

Mnemonic: "All Students Take Calculus" (All in I, Sin in II, Tan in III, Cos in IV).

Standard Angle Values

Angle 30° 45° 60° 90°
sin θ 0 1/2 1/√2 √3/2 1
cos θ 1 √3/2 1/√2 1/2 0
tan θ 0 1/√3 1 √3 Undefined

Inverse Trigonometric Identities

Identity Formula
Complementary sin⁻¹ x + cos⁻¹ x = π/2
Negative sin⁻¹ (-x) = -sin⁻¹ x
Tangent Sum tan⁻¹ x + tan⁻¹ y = tan⁻¹ ((x + y)/(1 - xy))

Triangle Formulas

Type Formula
Law of Sines a/sin A = b/sin B = c/sin C
Law of Cosines c² = a² + b² - 2ab cos C
Area (Sine) Area = (1/2)ab sin C
Heron’s Formula Area = √[s(s-a)(s-b)(s-c)], s = (a+b+c)/2

Applications (Heights, Distances, Algebra)

Application Formula/Example
Height Calculation Height = Distance × tan θ
Algebraic Simplification Simplify: sin²θ + cos²θ → 1
Equation Solving Solve: 2sin θ = 1 → sin θ = 1/2, θ = 30°

Graphs of Trigonometric Functions

1. Sine Function (sin θ)

Description: Periodic wave, period 360°, amplitude 1, oscillates between -1 and 1. Crosses x-axis at 0°, 180°, 360°.

[Graph Placeholder: Insert sin θ graph or view at Desmos: y = sin(x)]

2. Cosine Function (cos θ)

Description: Similar to sine, shifted left by 90°. Period 360°, amplitude 1, starts at (0,1).

[Graph Placeholder: Insert cos θ graph or view at Desmos: y = cos(x)]

3. Tangent Function (tan θ)

Description: Period 180°, undefined at 90°, 270°. Crosses x-axis at 0°, 180°.

[Graph Placeholder: Insert tan θ graph or view at Desmos: y = tan(x)]

Quadrant Diagram

Description: A circle divided into four quadrants:
- I: (x > 0, y > 0), all positive.
- II: (x < 0, y > 0), sin/csc positive.
- III: (x < 0, y < 0), tan/cot positive.
- IV: (x > 0, y < 0), cos/sec positive.

[Diagram Placeholder: Insert unit circle with quadrants or view at Desmos: Unit Circle]

Previous Post Next Post

ads

نموذج الاتصال